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Abstract
A usual loop algebra, not necessarily the matrix form of the loop algebra
Ãn−1, is also made use of for constructing linear isospectral problems,
whose compatibility conditions exhibit a zero-curvature equation from which
integrable systems are derived. In order to look for the Hamiltonian structure
of such integrable systems, a quadratic-form identity is created in the present
paper whose special case is just the trace identity; that is, when taking the loop
algebra Ã1, the quadratic-form identity presented in this paper is completely
consistent with the trace identity.

PACS number: 02.30.Ik

1. Introduction

The existing linear isospectral problems are mostly expressed by the loop algebra Ã1, i.e.{
ψx = Uψ, U = U(λ, u), V = V (λ, u) ∈ Ã1,

ψt = V ψ, ψ = (ψ1, ψ2)
T , u = (u1, u2, . . . , up)T , λt = 0,

(1)

whose compatibility condition ψxt = ψtx exhibits the following zero-curvature equation:

Ut − Vx + [U,V ] = 0. (2)

The nonlinear evolution equation derived from (2)

ut = K(u) (3)

is known as Lax integrable. In order to write equation (3) as a Hamiltonian form, the famous
trace identity was established in [1–3] as follows:

δ

δui

〈
V,

∂U

∂λ

〉
= λ−γ ∂

∂λ

(
λγ

〈
V,

∂U

∂ui

〉)
, i = 1, 2, . . . , p, γ = const. (4)
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This simple and efficient approach has been applied to a host of continuous and discrete
integrable systems for constructing Hamiltonian structure which shows that the approach is a
powerful tool and holds for arbitrary Ãn−1.

The starting point of the above approach is to choose the functional for two elements A

and B of Ã1

f (A,B) = 〈A,B〉 = tr(AB) (5)

which possesses the following features: symmetry:

〈A,B〉 = 〈B,A〉, (6)

bilinear relation:

〈α1A1 + α2A2, B〉 = α1〈A1, B〉 + α2〈A2, B〉, (7)

simplicity of the variational calculation:

∇B〈A,B〉 = A, ∇B〈A,Bx〉 = −Ax, (8)

communication:

〈[A,B], C〉 = 〈A, [B,C]〉, A,B,C ∈ Ã1. (9)

Again a proper functional is designed and its variational calculation is given a constrained
condition so that the trace identity (4) is obtained. Obviously, if U and V in the linear
isospectral problems are not of matrix form, the trace identity is invalid for establishing the
Hamiltonian structure. It is our primary purpose to overcome the limitations.

2. A general isospectral problem

Let G be an s-dimensional Lie algebra with the basis

e1, e2, . . . , es, (10)

and the corresponding loop algebra G̃ possesses the basis as follows:

ei(m) = eiλ
m, i = 1, 2, . . . , s, m = 0,±1,±2, . . . , [ei(m), ej (n)] = [ei, ej ]λm+n.

(11)

Note that

∂ =
n∑

i=1

αi

∂

∂xi

, (12)

where αi are arbitrary constants, i = 1, 2, . . . , n.
For the scalar function a or the element of G̃, denote

a∂ = ∂a =
n∑

i=1

αi

∂a

∂xi

. (13)

In terms of G̃, we establish an isospectral problem, but the form (1) cannot be used again,{
ψ∂ = [U,ψ], U, V,ψ ∈ G̃,

ψt = [V,ψ], λt = 0.
(14)

The compatibility ψ∂t = ψt∂ leads to the zero-curvature equation

Ut − V∂ + [U,V ] = 0. (15)
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For λ and ui (i = 1, 2, . . . , p) in U = U(λ, u) = ∑s
i=1 Uiei , we should define the proper

rank numbers denoted by rank(λ) and rank(ui) so that rank(Uiei) = α = const, 1 � i � s,
and simultaneously we call U the same rank, or homogeneous in rank, denoted by

rank(U) = rank(∂) = rank

(
∂

∂xi

)
= α, i = 1, 2, . . . , n. (16)

Taking

V =
∑
m�0

Vmλ−m, Vm =
s∑

i=1

Vmiei ∈ G, (17)

where Vmi are scalar functions, and solving the stationary zero-curvature equation

V∂ = [U,V ] (18)

gives rise to the cycled relations among Vm; it follows from (15) that an integrable hierarchy
of evolution equations is worked out.

Assume that the rank(Vm) is given and let rank(Vmλ−m) be a constant, i.e.,

rank(Vmλ−m) = η = const, m � 0. (19)

V is called the same rank, denoted by

rank(V ) = η. (20)

Let the two arbitrary solutions V and V̄ of equation (18) with the same rank have a linear
relation

V̄ = γV, γ = const. (21)

In what follows, relation (21) will be used when deducing the quadratic-form identity.

3. The quadratic-form identity

Let G̃ be the loop algebra in the previous section,

a =
s∑

i=1

aiei, b =
s∑

i=1

biei ∈ G̃, [a, b] =
s∑

i=1

ciei, (22)

representing (22) as the coordinate forms

a = (a1, a2, . . . , as)
T , b = (b1, b2, . . . , bs)

T , [a, b] = (c1, c2, . . . , cs)
T , (23)

then G̃ can be expressed by

G̃ =
{

a = (a1, a2, . . . , as)
T , ai =

∑
m

aimλm, 1 � i � s

}
(24)

with the commuting operation

[a, b] = (c1, c2, . . . , cs)
T .

For a, b ∈ G̃, define their functional {a, b} by

{a, b} = aT Fb, (25)

where F = (fij )s×s is a symmetric constant matrix, i.e. FT = F .
It is easy to find that {a, b} satisfies the symmetry

{a, b} = {b, a}, (26)



8540 F Guo and Y Zhang

and the bilinear relation

{α1a1 + α2a2, b} = α1{a1, b} + α2{a2, b}. (27)

The gradient ∇b{a, b} of the functional {a, b} is defined by

∂

∂ε
{a, b + εV }|ε=0 = {∇b{a, b}, V }, (28)

where V = (V1, V2, . . . , Vs)
T .

From (27), it is easy to calculate that

∇b{a, b} = a. (29)

Due to ∂∗ = −∂ , we have

∇b{a, b∂} = ∇b{−a∂, b} = −a∂, (30)

i.e. the two operations (8) hold according to the functional {a, b}. If we take

∂

∂ε
{a, b + εV }|ε=0 = (∇b{a, b}, V ) =

(
δ{a, b}

δb
, V

)
=

s∑
i=1

δ{a, b}
δbi

Vi, (31)

then

∇b{a, b} = Fa, ∇b{a, b∂} = −Fa∂. (32)

Equations (29) and (30) are associated with (25), which we shall use in what follows.
By applying the functional (5), it is easy to deduce the property (9). In terms of {a, b},

expression (9) can be represented as

{[a, b], c} = {a, [b, c]}. (33)

There is an open problem: which symmetric constant matrix F = (fij )s×s can satisfy
expression (33)? Let

[a, b]T = aT R(b) = −[b, a]T = −bT R(a), (34)

since [a, b]T is known, R(b) is a determined s × s matrix which plays an important role in the
paper. Equation (33) can be written as

aT R(b)Fc = aT F (bT R(c))T = aT F (−cT R(b))T = aT (−FRT (b))c.

Due to a and c being arbitrary, we have

R(b)F = −FRT (b) = −(R(b)F )T (35)

which exhibits that R(b)F is an anti-symmetric matrix while F is a symmetric constant
matrix.

If (35) had a solution F �= 0, then (33) could hold and the functional {a, b} could have
the properties (6)–(9).

Set u = (u1, u2, . . . , up)T , ui = ui(t, x1, x2, . . . , xn) are the smooth scalar functions,
f (a1, a2, . . . , am) stands for a functional, ak = ak(u) is the functional of u. For the
convenience of writing, take m = 2, a = (a1, a2)

T , f (a1, a2) = f (a1(u), a2(u)) = f (u).

Proposition. If ∇af = δf

δa
= (

δf

δa1
,

δf

δa2

)T = 0, then

δf

δu
=

(
δf

δu1
,

δf

δu2
, . . . ,

δf

δup

)T

= 0. (36)
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Proof. From the definition of ∇af , we have

∇af = δf

δa
=

(
δf

δa1
,

δf

δa2

)T

,

∂

∂ε
f (a(u + εl))|ε=0 =

(
δf

δu
, l

)

= ∂

∂ε
{f (a1(u + εl), a2(u)) + f (a1(u), a2(u + εl))}|ε=0

=
∑

(β1,β2,...,βn)

{
∂f

∂a
(β1,β2,...,βn)

1

∂

∂ε
a

(β1,β2,...,βn)

1 (u + εl)|ε=0

+
∂f

∂a
(β1,β2,...,βn)

2

∂

∂ε
a

(β1,β2,...,βn)

2 (u + εl)|ε=0

}
,

where

a
(β1,β2,...,βn)

k = ∂β1+β2+···+βnak

∂x
β1
1 ∂x

β2
2 . . . ∂x

βn
n

, k = 1, 2, l = (l1, l2, . . . , lp)T .

Therefore,(
δf

δu
, l

)
= δf

δa1

∂

∂ε
a1(u + εl)|ε=0 +

δf

δa2

∂

∂ε
a2(u + εl)|ε=0

=
∑

(β1,β2,...,βn)

{
δf

δa1

(
∂a1

∂u(β1,β2,...,βn)
, l(β1,β2,...,βn)

)
+

δf

δa2

(
∂a2

∂u(β1,β2,...,βn)
, l(β1,β2,...,βn)

)}

=

 ∑

(β1,β2,...,βn)

(−1)β1+β2+···+βn
∂β1+β2+···+βn

∂x
β1
1 ∂x

β2
2 . . . ∂x

βn
n

×
{

δf

δa1

∂a1

∂u(β1,β2,...,βn)
+

δf

δa2

∂a2

∂u(β1,β2,...,βn)

}
, l


 , (37)

where

∂ak

∂u(β1,β2,...,βn)
=

(
∂ak

∂u
(β1,β2,...,βn)

1

,
∂ak

∂u
(β1,β2,...,βn)

2

, . . . ,
∂ak

∂u
(β1,β2,...,βn)
p

)T

.

Hence, if δf

δa
= 0, then δf

δu
= 0. �

Introduce the functional

W = {V,Uλ} + {
,V∂ − [U,V ]}, (38)

where U and V meet (18), while 
(∈ G̃) is to be determined. For the variational calculation
of W , we give rise to the following constrained conditions:

∇V W = Uλ − 
∂ + [U,
] = 0, (39)

∇
W = V∂ − [U,V ] = 0, (40)

where U is known, V and 
 are related to U. Moreover, it follows that

δ

δui

{V,Uλ} = δW

δui

, i = 1, 2, . . . , p. (41)



8542 F Guo and Y Zhang

The ui of V and Uλ need to be considered in computing the left-hand side of the above formula,
while we only consider the ui of U in computing the right-hand side of the above formula, not
necessary to consider the ui of V and 
, such that the deducing calculation is derived from
the constrained conditions (39), (40) and the proposition (36).

Hence,

δ

δui

{V,Uλ} = δW

δui

=
{
V,

∂Uλ

∂ui

}
+

{
[
,V ],

∂U

∂ui

}
. (42)

From the Jacobi identity and equations (39) and (40), we obtain

[
,V ]∂ = [
∂, V ] + [
,V∂ ] = [Uλ + [U,
], V ] + [
, [U,V ]]

= [V, [
,U ]] + [
, [U,V ]] + [Uλ, V ] = [U, [
,V ]] + [Uλ, V ]. (43)

From (40), we have

Vλ∂ = [U,Vλ] + [Uλ, V ]. (44)

Thus, [
,V ] − Vλ = Z satisfies

Z∂ = [U,Z].

By making use of (21) and rank(Z) = rank(Vλ) = rank
(

1
λ
V

)
, due to 1

λ
V being a solution of

(40), there exists a constant γ which satisfies

[
,V ] − Vλ = Z = γ

λ
V. (45)

Therefore, (42) can be expressed as

δ

δui

{V,Uλ} =
{
V,

∂Uλ

∂ui

}
+

{
Vλ,

∂U

∂ui

}
+

γ

λ

{
V,

∂U

∂ui

}

= ∂

∂λ

{
V,

∂U

∂ui

}
+

(
λ−γ ∂

∂λ
λγ

) {
V,

∂U

∂ui

}

= λ−γ ∂

∂λ

(
λγ

{
V,

∂U

∂ui

})
, i = 1, 2, . . . , p. (46)

We express the above result as follows.

Theorem 1 (The quadratic-form identity). Assume conditions (16) and (21) hold, [a, b]T =
aT R(b), the symmetric constant matrix F turns R(b)F into the anti-symmetric matrix. As for
the quadratic-form functional {a, b} = aT Fb, the following formula holds:

δ

δui

{V,Uλ} = λ−γ ∂

∂λ

(
λγ

{
V,

∂U

∂ui

})
, i = 1, 2, . . . , p, (47)

where γ is a constant to be determined. We call (47) the quadratic-form identity.

4. A commuting operator

Set Vs = {b = (b1, b2, . . . , bs)
T } to be an s-dimensional linear space, Ms a set of s × s

matrices. In the course of deducing (47), the operator R from Vs to Ms is introduced by

R(b) ∈ Ms, b ∈ Vs (48)

so that R is applied to

[a, b]T = aT R(b). (49)
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The property of the bilinearity of [a, b]T requires that R is a linear operator; the anti-symmetry
of [a, b]T requires

aT R(b) = −bT R(a). (50)

For the relation {[a, b], c} = {a, [b, c]} to hold, F needs to meet the following:

R(b)F = −FRT (b). (51)

We find that the linearity of R and equality (50) cannot turn Vs into a Lie algebra with the
commuting operation [a, b].

Definition. Let R be a linear operator from Vs to Ms , and satisfy

R(RT (b)a) = [R(a), R(b)] = R(a)R(b) − R(b)R(a), ∀a, b ∈ Vs, (52)

then R is called a commuting operator on Vs . All the commutators on Vs constitute a set
denoted by K(Vs,Ms).

Theorem 2. Vs is a Lie algebra with the commuting operation [a, b] if and only if there exists
R ∈ K(Vs,Ms) so that

[a, b]T = aT R(b). (53)

Proof. Set [a, b] to be a commutator of the Lie algebra Vs, [a, b]T = aT R(b). According
to the linearity of [a, b] with respect to b,R is a linear operator from Vs to Ms . Since
[a, b]T = −[b, a]T we have aT R(b) = −bT R(a). By making use of the Jacobi identity, we
have

[[a, b], c]T + [[b, c], a]T + [[c, a], b]T

= aT R(b)R(c) + bT R(c)R(a) + bT R([a, c]))

= bT (R(c)R(a) − R(a)R(c) + R([a, c])

= 0, ∀a, b, c ∈ Vs.

Since b is arbitrary, the following relation holds:

R([a, c]) = R(a)R(c) − R(c)R(a) = [R(a), R(c)], ∀a, c ∈ Vs.

Since R([a, c]) = R(RT (c)a), the equality (52) holds.
Conversely, for ∀R ∈ K(Vs,Ms), we regard

[a, b] = RT (b)a ([a, b]T = aT R(b)) (54)

as a commuting operation of Vs .
Since R is a linear operator, [a, b] is bilinear. In terms of (52), we obtain

R(RT (b)a) = −R(RT (a)b). (55)

Therefore, RT (b)a = −RT (a)b, that is, [a, b] is anti-symmetric. Condition (52) guarantees
that the commuting operation defined by (54) satisfies the Jacobi identity. Hence, Vs is a Lie
algebra. �

Corollary. Let

b = (b1, b2, b3)
T , R(b) =


 α1b2 + α2b3 β1b2 + β2b3 γ1b2 + γ2b3

−α1b1 + α3b3 −β1b1 + β3b3 −γ1b1 + γ3b3

−α2b1 − α3b2 −β2b1 − β3b2 −γ2b1 − γ3b2


, (56)



8544 F Guo and Y Zhang

where αi, βj , γk are constants to be determined. Then R ∈ K(V3,M3) if and only if


α2γ1 − α1γ2 = β1γ3 − β3γ1,

α2β1 − α1β2 = β3γ2 − β2γ3,

α3β1 − α1β3 = α2γ3 − α3γ2.

(57)

Given α1, α2, α3 and β1, β2, β3, set α2 + β3 �= 0, α2β3 − α3β2 �= 0, then there exist the unique
solutions γ1, γ2, γ3 of the linear equations (57).

Example 1. V3 = Ã1 = {
A = (

a1 a2
a3 −a1

) = a1h+a2e +a3f = (a1, a2, a3)
T , ak = ∑

m akmλm,

m = 0,±1,±2, . . .
}
,

[A,B]T = (AB − BA)T = (a2b3 − a3b2, 2a1b2 − 2a2b1, 2a3b1 − 2a1b3)

= (a1, a2, a3)


 0 2b2 −2b3

b3 −2b1 0
−b2 0 2b1


 = aT R(b), (58)

where α1 = α2 = 0, α3 = 1, β1 = 2, β2 = β3 = 0, γ2 = −2, γ1 = γ3 = 0, R(b) meets (57).
It is easy to verify that

F = c


2 0 0

0 0 1
0 1 0


 =


2 0 0

0 0 1
0 1 0


 (taking c = 1) (59)

satisfies (R(b)F )T = −R(b)F .

a =

a1

a2

a3


 ↔ A =

(
a1 a2

a3 −a1

)
, b =


b1

b2

b3


 ↔ B =

(
b1 b2

b3 −b1

)
,

〈A,B〉 = tr(AB) = 2a1b1 + a2b3 + a3b2, {a, b} = aT Fb = 2a1b1 + a3b2 + a2b3,

〈A,B〉 = {a, b}.

(60)

The equality (60) shows that (47) and (4) are completely consistent when taking V3 = Ã1.

Example 2. V3 = R3 = {a = a1i + a2j + a3k = (a1, a2, a3)
T }, the vector product of a and b

in R3 is as follows:

a × b = det


 i j k

a1 a2 a3

b1 b2 b3


 = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k

= (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T .

Obviously, we have

(a × b)T = (a1, a2, a3)


 0 −b3 b2

b3 0 −b1

−b2 b1 0


 , (61)

where

R(b) =

 0 −b3 b2

b3 0 −b1

−b2 b1 0


 (62)

meets (57), and R3 is a Lie algebra along with the commuting operation [a, b] = a × b. Since
RT (b) = −R(b), we may take F = diag(1, 1, 1) such that

{a, b} = a1b1 + a2b2 + a3b3. (63)
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Example 3. The loop algebra V6 = {
a = (a1, a2, . . . , a6)

T , ak = ∑
m akmλm

}
,

[a, b]T = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1, a2b6 − a6b2 + a5b3 − a3b5,

a3b4 − a4b3 + a6b1 − a1b6, a1b5 − a5b1 + a4b2 − a2b4), (64)

R(b) =




0 −b3 b2 0 −b6 b5

b3 0 −b1 b6 0 −b4

−b2 b1 0 −b5 b4 0
0 0 0 0 −b3 b2

0 0 0 b3 0 −b1

0 0 0 −b2 b1 0




, (65)

F =




1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0




, (66)

{a, b} = aT Fb = a1b1 + a1b4 + a4b1 + a2b2 + a2b5 + a5b2 + a3b6 + a6b3 + a3b3. (67)

The two subalgebras of V6 read G1 = {a = (a1, a2, a3, 0, 0, 0)T },G2 = {b = (0, 0, 0, b1,

b2, b3)
T }, which satisfy

V6 = G1 +̇ G2, [G1,G2] ⊂ G2. (68)

Integrable couplings are a quite new topic in soliton theory [4, 5]. By employing (68), we
may derive integrable couplings of the known integrable hierarchies of soliton equations with
the help of V6 [6–8].

5. Applications of the quadratic-form identity

We make use of the loop algebra V6 and the resulting functional (67) to derive a hierarchy.
Let U = (λ, u1, u2, 0, u3, u4)

T , rank(λ) = rank(uk) = rank(U) = rank(∂) = 1, 1 �
k � 4. Taking V = (b(1), b(2), b(3), b(4), b(5), b(6))T , b(k) = ∑

m�0 b(k)
m λ−m, k = 1, 2, . . . , 6,

and solving the equation

V∂ = [U,V ] (69)

gives


b
(1)
m∂ = u1b

(3)
m − u2b

(2)
m , b

(2)
m∂ = u2b

(1)
m − b

(3)
m+1,

b
(3)
m∂ = b

(2)
m+1 − u1b

(1)
m , b

(4)
m∂ = u1b

(6)
m − u4b

(2)
m + u3b

(3)
m − u2b

(5)
m ,

b
(5)
m∂ = −b

(6)
m+1 + u2b

(4)
m + u4b

(1)
m ,

b
(6)
m∂ = b

(5)
m+1 − u3b

(1)
m − u1b

(4)
m ,

b(1) = β = const, b
(k)
0 = 0, 2 � k � 6, b

(2)
1 = βu1, b

(3)
1 = βu2, b

(5)
1 = βu3,

b
(6)
1 = βu4, b

(1)
1 = b

(4)
1 = 0, b

(1)
2 = − β

2

(
u2

1 + u2
2

)
, b

(2)
2 = βu2∂ ,

b
(3)
2 = −βu1∂ , b

(4)
2 = −β(u1u3 + u2u4), b

(5)
2 = βu4∂ ,

b
(6)
2 = −βu3∂ , rank

(
b(k)

m

) = m, rank(V ) = 0.

(70)
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Noting V
(n)

+ = ∑n
m=0

(
b(1)

m , b(2)
m , b(3)

m , b(4)
m , b(5)

m , b
(6)
6

)T
λn−m, V

(n)
− = λnV −V

(n)
+ , equation (69)

can be written as

−V
(n)

+∂ +
[
U,V (n)

+

] = V
(n)
−∂ − [

U,V
(n)
−

]
.

The terms on the left-hand side in the above equality are of degree � 0, while the terms on the
right-hand side are of degree � 0. Therefore,

−V
(n)

+∂ +
[
U,V (n)

+

] = −(
0,−b

(3)
n+1, b

(2)
n+1, 0,−b

(6)
n+1, b

(5)
n+1

)T
.

Denoting V (n) = V
(n)

+ , the following zero-curvature equation

Ut − V
(n)
∂ + [U,V (n)] = 0

gives the integrable system

ut =




u1

u2

u3

u4




t

=




−b
(3)
n+1

b
(2)
n+1

−b
(6)
n+1

b
(5)
n+1


 =




0 0 0 −1
0 0 1 0
0 −1 0 1
1 0 −1 0







b
(2)
n+1 + b

(5)
n+1

b
(3)
n+1 + b

(6)
n+1

b
(2)
n+1

b
(3)
n+1


 = JPn+1. (71)

According to the quadratic-form identity, we obtain

δ

δu
(b(1) + b(4)) = λ−γ ∂

∂λ


λγ




b(2) + b(5)

b(3) + b(6)

b(2)

b(3)





 . (72)

Comparison of the coefficients of λ−n−2 yields

δ

δu

(
b

(1)
n+2 + b

(4)
n+2

) = (γ − n − 1)




b
(2)
n+1 + b

(5)
n+1

b
(3)
n+1 + b

(6)
n+1

b
(2)
n+1

b
(3)
n+1


 . (73)

Taking n = 0 leads to γ = 0. Therefore,

Pn+1 = δHn+1

δu
, Hn+1 = −b

(1)
n+2 + b

(4)
n+2

n + 1
, n � 0. (74)

The system (71) can be written as

ut = JPn+1 = J
δHn+1

δu
, n � 0. (75)

From (70), an operator L meets

Pn+1 = LPn, (76)

where

L =




−u1∂
−1u2 ∂ + u1∂

−1u1 −u3∂
−1u2 − u1∂

−1u4 u3∂
−1u1 + u1∂

−1u3

−∂ − u2∂
−1u2 u2∂

−1u1 −u4∂
−1u2 − u2∂

−1u4 u4∂
−1u1 + u2∂

−1u3

0 0 −u1∂
−1u2 ∂ + u1∂

−1u1

0 0 −∂ − u2∂
−1u2 u2∂

−1u1


 .
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Hence, (75) can be written again as

ut = JLn




β(u1 + u3)

β(u2 + u4)

βu1

βu2


 = J

δHn+1

δu
, n � 0. (77)

We observe that

JL = L∗J. (78)

From (70), the scalars b(1), b(2) and b(3) are independent of u3 and u4; that is to say, the first
and second equations in (71) have no relations with u3 and u4. Therefore, we obtain(

u1

u2

)
t

=
(

−b
(3)
n+1

b
(2)
n+1

)
=

(
0 −1
1 0

) (
b

(2)
n+1

b
(3)
n+1

)

=
(

0 −1
1 0

) (
−u1∂

−1u2 ∂ + u1∂
−1u1

−∂ − u2∂
−1u2 u2∂

−1u1

)n (
βu1

βu2

)
, n � 0. (79)

Assuming u3 = u4 = 0, we may take b(4) = b(5) = b(6) = 0; then the system (77) casts
into the reduced system (79), which is an integrable hierarchy of equations. The later two
equations in (77) concretely contain u1 and u2; therefore, it is a type of integrable coupling of
the system (79). We observe that the system (79) is similar to the AKNS hierarchy; however,
it is a far cry from the AKNS hierarchy. Hence, we call the system (79) a modified-AKNS
hierarchy, which is denoted by m-AKNS hierarchy. It is easy to obtain from (79) that(

b
(2)
n+1

b
(3)
n+1

)
=

(
δ

δu1

δ
δu2

) (
− b

(1)
n+2

n + 1

)
. (80)

Since the equality (78) holds, the Hamiltonian functions Hl (l � 1) in (77) are involutive each
other and each Hl is the common conserved density of (77). Therefore, the hierarchy (77) is
a Liouville integrable hierarchy.

The m-AKNS–KN hierarchy was obtained in [7] whose Hamiltonian structure could not
be worked out because the trace identity was not suitable. Now we are satisfied that the
problem is overcome by using the quadratic-form identity presented in this paper. We recall
that the integrable couplings of the AKNS hierarchy and the KN hierarchy were obtained by
using the subalgebras of the loop algebra Ã2 in [5, 6]. It seems we can use the trace identity
to get the Hamiltonian structure of the above integrable coupling, but some equalities just as
0 = 0 were presented by making use of the trace identity, which shows that the trace identity
holds but is invalid.

The system (77) is the integrable coupling of the m-AKNS hierarchy (79) and possesses
the Hamiltonian structure. Therefore, it is the first example with two such features.
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